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ABSTRACT The overall level of emissions from the Swiss passenger cars is strongly dependent on the

fleet composition. Despite technology improvements, the Swiss passenger cars fleet remains emissions

intensive. To analyze the root of this problem and evaluate potential solutions, this paper applies deep learning

techniques to evaluate the inter-class (namely micro, small, middle, upper middle, large and luxury class) and

intra-class (namely sport utility vehicle and non-sport utility vehicle) differences in carbon dioxide (CO2)

emissions. This paper takes full use of novel semi-supervised fuzzy C-means (SSFCM), random forest and

AdaBoost models as well as model fusion to successfully classify passenger vehicles and enable segment-

based CO2 emission evaluations.

INDEX TERMS CO2 emissions, feature learning, semi-supervised deep learning, vehicle classification.

I. INTRODUCTION

More than 5 years after the adoption of the Paris agreement,

which aims to limit global warming to below 2 ◦C (preferably

1.5 ◦C), global greenhouse gas emissions continue growing

steadily [1]. According to the 2016 EU Reference Scenario,

without an ambitious commitment towards decarboniza-

tion, transport related carbon dioxide (CO2) emissions are

expected to decrease only by 8% between 2010 and 2050 and

will reach their largest share by the end of the projection

period (2050) [2], [3]. Underlying this limited decrease are a

significant increase in the number of passenger cars, the slow

market penetration of electric cars and a limited shift towards

alternative fuels.

Switzerland is responsible for less than 0.2% of global

man-made fossil CO2 emissions [4]. However, the trans-

port sector represents the largest consumer of fossil fuels

in Switzerland and caused about 32% of Switzerland’s CO2

emissions in 2019 (i.e., around 15 million tonnes CO2 eq.,

excluding international aviation and shipping). Road trans-

port was responsible for 98% of these emissions, with only

small contributions from national shipping (0.8%), aviation

(0.8%) and rail transport (0.2%). Among the different forms
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of road transport, passenger cars accounted for almost two

thirds of the total emissions (73%), followed by freight trans-

port (21%), buses (3%) and motorcycles (2%) [5]. Therefore,

in order to meet the CO2 reduction targets of Switzerland [6],

fossil energy carriers in the mobility sector have to be sub-

stituted by ones based on renewable energies and the overall

energy consumption has to be reduced. Although substituting

fossil energy by renewable ones is essential to meet the CO2

reduction targets, decisions about investments and new poli-

cies are not moving fast enough to decarbonize the economy

in compliance with the Paris agreement.

On the other hand, during the last decades there have been

large technical and dimensional changes in new passenger

vehicles, mostly related to technology improvements and

intra-class variations. Particularly relevant are the changes

in the dimensions of the vehicle segments (i.e., increased

size of the vehicles in most segments), within single vehicle

segments (i.e., increased share of SUVs), and other design

parameters like increased efficiency of the engine and engine

displacement down-sizing. Understanding the impact of these

changes on the fuel consumption and CO2 emissions is cru-

cial to develop successful strategies to decarbonize the road

transport.

Since the division of vehicles into segments by experts

is not standardized and therefore not always uniform, and
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FIGURE 1. Type approval CO2 emission measurements are conducted for new vehicles using regulatory cycles. Under the New European
Driving Cycle (NEDC), the average level of CO2 emissions from new passenger cars registered may not exceed 95 g CO2 /km in 2021. This
corresponds to a WLTP (world harmonized light-duty vehicles test procedure) target of 118 g CO2 /km. The switch to the WLTP procedure
results on average on 20 % higher emissions than with the NEDC [13].

some vehicle models have recently positioned themselves as

‘‘crossovers’’ between established vehicle categories [7], [8],

it has become increasingly difficult and inaccurate to seg-

ment the vehicle population using conventional classification

methods. Using mathematical approaches, vehicles can be

uniformly divided into segments based on similarity features.

The development of a mathematical approach to accurately

segment passenger vehicles is essential for determining the

re-al CO2 emissions from road traffic in the future. While

road traffic has so far had its own energy system, which

was comparatively easy to assess in terms of CO2 emis-

sions, increasing electrification of road traffic will difficult

the distinction of energy consumption from road traffic and

other stationary energy uses. Moreover, the estimated overall

impact of the introduction of the world harmonized light-duty

vehicles test procedure (WLTP) on average CO2 emissions

is in the order of 15-25%, which would lead to on average

18-30 g/km higher CO2 emissions for the new passenger

cars [9]–[12] (Fig. 1). Moreover, due to the limited informa-

tive value of the CO2 type approval values on the real CO2

emissions, the wide margin of uncertainty regarding vehicle

classification and the type approval extension based on the

new definitions in the test protocol [11], this segmentation is

an important step on the way to a newCO2 assessment of road

traffic.

In this study, by segmenting the passenger vehicles based

on technical and dimensional characteristics, we aim to better

understand the impact of inter-class (between classes of a

multi-class) and intra class (within each class) variations

to the passenger vehicle fleet CO2 footprint [14]. In our

approach, several semi-supervised clustering algorithms are

compared and used to predict labels from unsupervised

clustering algorithms based on a feature learning technique,

which is a highly useful method for representation learning

with high-dimensional datasets containing high-level uncer-

tainties [15]–[24]. This paper is an extension of a previous

work originally focused on developing a machine learning

basedmethodology for themathematical inter-class and intra-

class segmentation of passenger vehicles. Here we improved

the classification performance of this method by adding emis-

sion and technical features as an input. Based on this novel

approach, we can then predict accurate segment-based CO2

emissions, which allows for detailed analyses of the main

factors influencing the average fleet CO2 emissions. Our

results show that the proposedmethod is a viable and effective

to categorize vehicles based on their technical, emission and

dimensional features.

Section II briefly introduces the Swiss transportation sys-

tem. Section III presents the related research. Section IV

describes the methods. Section V provides concise details on

the used datasets, the algorithms, the performed experiments

and the discussion of the results and last, section VI provides

the majors findings of our work and recommendations for

further research.

II. SWISS TRANSPORT SECTOR AND CO2 EMISSIONS

In terms of mobility, Switzerland can be divided in three

main regions, namely urban, suburban, and rural areas. There

are major differences in the sustainability challenges posed

within these regions due to the urbanization. Fig. 2 illustrates

that the growth of the number of cars has placed additional

pressures on traffic congestion and parking spaces, partic-

ularly in higher density areas. This creates opportunities

for offering alternatives to cover the existing transportation
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FIGURE 2. Distribution of population and key parameters describing road mobility in urban, suburban and rural areas in Swizterland. Source: Statistik der
Schweizer Städte [26], Global Traffic Scorecard (Inrix) [27].

FIGURE 3. Average CO2 emissions (in g CO2 /km) of new passenger car registrations in Switzerland
in 2018.

needs, including public transit network and shared mobility

services. In contrast, in rural areas, which represent about

one third of the total Swiss population, due to the lack of

attractive and feasible transport alternatives, private auto-

mobile remains the most common form of transportation.

In addition, despite the high rate of the population accepting

public transport modes in Switzerland (59%), two thirds of

the total passenger kilometers are still completed by car [25].

Over 6.5 million motor vehicles were registered in 2018 in

Switzerland, more than 4.6 million of which were passenger

cars. Around one third of all passenger cars were more than

ten years old and over 1.6 million cars were completely

outdated. Only 0.4% of all passenger cars had purely electric

propulsion systems. Among the new registrations, petrol was

the most common fuel (68%), while almost 30% of the sold

vehicles had a diesel engine [28]. The mean type approval

CO2 emissions of newly registered cars continuously dropped

from around 190 g CO2/km in 2003 to around 134 g CO2/km

in 2016. After this steady decline, the mean CO2 emissions of

the new registrations rose again to 137.8 g CO2/km in 2018.

As a result, the specified target value of 130 g CO2/km that

came into force in 2012 was not entirely met. Fig. 3 shows

that new cars in the Southeast of the country are generally less

fuel efficient and produce more CO2 emissions compared to

the new cars in the Northwest.

It is forecasted that the share of electric vehicles in the

Swiss passenger car fleet will increase from 1.5% in 2021 to

38-74% in 2050, depending on the considered scenario [29].

In addition to the considerable savings in terms of fossil fuel

consumption, the increasing share of electric vehicles will

drastically reduce the CO2 emissions compared to vehicles

powered by fossil fuels [30].
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III. RELATED WORK

Over the last decades, as a result of new European CO2

regulations, car manufacturers have used a whole range of

technical and dimensional solutions to meet specific annual

CO2 emission targets. The review of related literature shows

that the large changes in the passenger car models over

time poses an additional challenge to the accurate vehicle

classification [31]–[34].

In spite of the partial achievement of the targets based

on the type approval CO2 emissions (laboratory tests),

real-world CO2 emissions have decreased by only about

10% [35]. Subsequently, the gap between the calculated and

real-world CO2 emissions has widened from 9% to 42%,

resulting in 31 g CO2/km of fake emissions savings [36], [37].

This gap varies considerably across countries due to the

significant variation within vehicle classes. However, the lack

of a standard classification method, hinders the comparison

of these results between different countries [38], [39].

In order to close the gap between the CO2 emis-

sions results estimated by two major techniques (top-down

approaches focusing on fuel market interactions and bottom-

up approaches focusing on technological details), researchers

have developed multiple simulation programs, such as green-

house gas emission models and vehicle energy calcula-

tion tools, for the compilation of emission inventories

[40]–[43], [45]. From this point of view, the simulation is

useful to compensate the limitations of the laboratory test

methods. For example, Seo et al. [46] developed a vehicle

type classification simulation method using a bottom-up

approach to calculate national CO2 emissions. This study

concluded that CO2 emissions of medium and heavy-duty

vehicles (MHDV) represented 25.5% of the total on-road

emissions, although only 4.2% of all vehicles were MHDV.

Jimenez et al. [47] reviewed the influence of vehicle classi-

fication, vehicle characteristics, vehicle brand and registra-

tion year on the real-world CO2 emissions. They employed

a database of 650 passenger cars. This study explained

the impact of these factors on the gap between real-world

and type-approval emission values. Ntziachristos et al. [48]
reported that the deviations in fuel consumption are directly

reflected in CO2 emissions. This study computed the

observed 11 % gap for in-use petrol and 16% for in-use

diesel with the type-approval procedure by controlling engine

capacity, vehicle mass and power. They used a database

of 924 passenger cars from Europe. The results indicated that

the large vehicle class has the highest deviation in test score.

All these studies show that simulation techniques are capa-

ble to overcome some of the limitations faced with fuel-

based approach in terms of estimating the CO2 emissions

of each vehicle class. However, the simulation techniques

cannot consider intra-class variations in CO2 emissions, they

are difficult to use when conducting a detailed analysis and

they require expert knowledge.

Lately, feature learning techniques have shown an out-

standing performance for addressing uncertainty problems

for clustering and classification [19], [49]–[55]. The

classification performance highly depends on a quality of

features generated from the data as input to the classi-

fier process. However, only a limited number of studies

have combined feature learning techniques to improve the

classification performance on a high dimensional dataset

and predict the vehicle CO2 emissions. For more details

about the feature learning techniques, refer to the article

by He et al. [56], in which the authors implemented feature

learning classification to analyze vehicular emissions. In par-

ticular, they applied decision tree, random forest, AdaBoost,

and XgBoost models based on the fuel type and registration

date. This study achieved a prediction accuracy of 70 %

by artificially controlling the registration date for different

users. Saleh et al. [57] used deep learning with a support

vector machine (SVM) model to predict CO2 emissions by

monitoring energy consumption. The low value of RootMean

Square Error of the model indicates the high accuracy of the

prediction. Ghahramani et al. [58] proposed an unsupervised
learning approach to estimate CO2 emissions from road

transport with a focus on taxi trips. This study identified the

most polluting trips and the vehicles associated with these

trips in order to replace them with alternative alternatives

powertrains, such as electric vehicles.

The classification method proposed in this paper is

a new semi-supervised clustering scheme (SSFCM) that

incorporates semi-supervised information in fuzzy C-means

(FCM) algorithm to considerably improve its effectiveness

[59]–[63]. In this field, Jiang et al. [64] combined several

feature extraction methods with a support vector machine

classifier to group the vehicles in six categories ‘‘large bus’’,

‘‘passenger car’’, ‘‘motorcycle’’, ‘‘minibus’’, ‘‘truck’’ and

‘‘van’’. This study achieved a classification accuracy of

97.4%. Balid et al. [65] implemented deep learning-based

classification using the vehicle length as a key feature. Their

method classifies vehicles into passenger vehicles, single

unit trucks, combination trucks, and multi-trailer trucks and

achieved a classification accuracy of 97%. Maungmai and

Nuthong [66] used a convolutional neural network method to

classify the vehicles type as ‘‘small’’, ‘‘medium’’, ‘‘large’’,

and ‘‘unknown’’, and vehicle color as ‘‘black’’, ‘‘blue’’,

‘‘white’’, ‘‘green’’, ‘‘yellow’’, ‘‘red’’, and ‘‘unknown’’. The

results comparison shows that, using decision trees, random

forest, and densely deep neural network classifier, the classi-

fication accuracy of vehicle type and vehicle color increased

by 1.8% and, 0.8%, respectively. Dong et al. [67] proposed
a vehicle type classification method using a semi-supervised

convolutional neural network using high-resolution vehicle

frontal view images. The algorithm achieved 88.1% accuracy.

IV. MATERIALS AND METHODS

A. SEMI-SUPERVISED CLUSTERING

Semi-supervised clustering aims to boost the accuracy of

the defined clusters by identifying better clusters than the

ones obtained from the unsupervised learning algorithm [19],

[68]–[74]. Typically, semi-supervised clustering methods
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FIGURE 4. The structure of the proposed semi-supervised deep learning approach.

result in a worse representation of the results in the orig-

inal feature space. To make the semi-supervised clustering

more efficient, it is reasonable to combine semi-supervised

clustering with deep feature learning [63], [75]–[77]. The

framework of the proposed clustering approach is depicted

in Fig. 4.

Unlike the most widely used approaches in semi-

supervised clustering based on the feature extraction tech-

nique, we consider three types of information (diffusion

labels, extracted core data, and extracted feature vectors) in

order to improve the classification accuracy and mitigate the

class imbalance and multi-class overlapping problems. This

framework includes three main layers. First, labeled data is

divided into train set and test set in order to build a classifier

and evaluate its output, respectively. Then, recordings from

the train set along with the unlabeled data are used as input

to the feature learning process. The output of the feature

learning step are the cluster centroids that are used to project

data from train and test sets into a new learnt space and

extract feature vectors in the feature extraction step. In the

classification step, AdaBoost [78], Random Forest [79], and

SSFCM models are built on the vectors of the train set and

then used to predict the labels for the feature vectors of the

test set. Finally, the performance parameters of the three

single models are compared to the model fusion ones to

evaluate their performances in terms of data classification and

prediction.

B. SEMI-SUPERVISED FUZZY C-MEAN CLUSTERING

Fuzzy C-means (FCM), as an overlapping clustering algo-

rithm, is one of the most popular fuzzy clustering meth-

ods [80]. FCM is a soft clustering algorithm, meaning that

each data point has a probability of belonging to each cluster

with partial membership values ranged from 0 to 1. How-ever,

due to the non-convexity of its objective function, it may fall

into a local optimal solution during optimization. To address

this issue, we propose a semi supervised fuzzy C-means

clustering (SSFCM) that incorporates deep feature learning

in FCM to further improve its effectiveness and eliminate

redundant information [81]–[83].

This method aims to minimize the objective function (J) as

follows:

Min J (X;U ,V ) =
∑N

k=1

∑C

i=1
umkiD

2
kiA (1 ≤ m < ∞)

(1)

s.t.
∑c

i=1
uki = 1 (0 ≤ uki ≤ 1) (2)

vi =

∑N
k=1 u

m
kiXk

∑N
k=1 u

m
ki

(3)

uki =
1

∑C
j=1

(

DkiA
DkjA

)2/(m−1)
(4)

D2
kiA = ‖Xk − vi‖

2
A = (Xk − vi)

TA(Xk − vi) (5)
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where N is number of data elements, C is the number of

clusters; Xk represents the data k of X = {X1,X2,X3,. . . ,XN}

in the ith cluster; uki represents the weighted squared errors

function known as membership function; m is a weighting

exponent that determines the degree of fuzziness and that

was set to 2 in order to ensure high membership values for

each data point to its closest cluster; A is a positive and

symmetric (n × n) weight matrix; U is the fuzzy partition

matrix of the dataset X into c cluster; vi is vectors of center
in ith cluster; K denotes the features, and ‖xk − vi‖

2
A denotes

to the Euclidean distance function and it is computed in the A
norm between jth data and ith cluster center.

The SSFCM methodology is composed of the following

four steps. First, with algorithm 1 we find the FCM member-

ships and centroids:

Algorithm 1 Fuzzy C-means Membership and Centroid

Input: N data elements X = {X1, X2,. . . ,XN}, weight

matrix (A), number of clusters (C), degree of fuzziness

(m = 2), max iteration number (T), error threshold (ε)

Output: uki, vi
Set t = 0

1. Initialize vi
2. Update t = t + 1

3. Compute uki
4. Compute vi
5. If t > T or ||ut− ut−1|| < ε then stop; otherwise

6. Repeat from step 3.

Next, algorithm 2 is used to calculate deep FCM member-

ships and centroids:

Algorithm 2 The Training Strategies for Deep Fuzzy

C-Means
Input: N data elements X = {X1, X2,. . . ,XN}, number of

clusters (C), clusters feature (K ), labeled dataset (L), unla-
beled dataset (UN), membership degree (U ), max iteration

number (T ), error threshold (ε)

Set t = 0

1. Initialize vki (random for labeled data)

2. Update t = t + 1

3. Compute uiL , uiUNL
4. Compute vk+1

iL , vk+1
iUNL

5. If a stopping criterion, t > T or ||Jt− Jt−1|| < ε,

is fulfilled for all labeled and unlabeled objective functions

separately then stop; otherwise

6. Repeat from step 3.

Then, using algorithm 3 we select the features (s ⊂ K) by

using the random oversampling (ROS) technique. The pur-

pose of the ROS approach is to maintain a balance between

the feature subsets of labeled classes and unlabeled data

elements [84], [85].

Next, we apply the Euclidean distance technique, which

is the most applied (dis)similarity or distance metric to

Algorithm 3 Feature Extraction of Deep Fuzzy C-Means

Input:N data elements X= {X1, X2,. . . ,XN}, clusters fea-

ture (K ), labeled dataset (L), unlabeled dataset (UN),µ (D)

mean of the elements of D, set of the centroids ( vkiL , v
k
iUNL)

Output: Set of extract features of labeled and unlabeled

dataset

Set Q = ∅

1. Compute DLk =
∥

∥xiL − vkiL
∥

∥

2. Compute DUNLk =
∥

∥xiUNL − vkiUNL
∥

∥

3. Compute means DLk&DUNLk of elements

µi (DiL) , µi (DiUNL)
4. feature extraction (fk (x) = max(0, µ (D) − Dk )
5. for all L and UNL features do

6. Return Q

measure the similarity between the labeled and unlabeled

feature vectors. The outcome is the maximum average of

the maximum relevant and minimum redundant features

between each selected feature of unlabeled data and labeled

classes [86]:

max Simi(Xj,V
s
L) = min djiL = min

∣

∣Xj − V s
iL

∣

∣

(1 ≤ i ≤ c), XjǫXUNL (6)

Last, in algorithm 4 themaximum average of themaximum

similarity between the selected features are estimated and

used in the classifiers.

Algorithm 4 Semi Supervised Fuzzy C-Means Classifier

Input: N data elements X = {X1,X2,. . . ,XN} with min-

imum features in any subset (s), set of the centroid

(V s
iL ,V

s
UNL) of selected features

Output: Predicted labeled data (Q = {qL+1, qL+2,. . . ,
qL+N })

Set Q = ∅

1. For i ǫ {1, . . . , c} do

2. For j ǫ {1, . . . , N} do

3. Employ V s
iL to calculate max Simi

4. If maximum average ofmax Simiǫi
th labeled class, then

5. Append Xj to i
th labeled class

6. Update Q if a labeled class is achieved

7. For all V s
iLǫV

s
L do

8. Return Q

C. STATE-OF-THE-ART METHODS

Two ensemble learning methods, Random Forest and

AdaBoost, are used to enhance the accuracy and performance

of the classification [87], [88]. The Random Forest model is

a parallel learning process that uses a bagging technique for

the data training [89]. This data sampling technique aims to

reduce the variance and bias in themodel by generatingmulti-

sets (multiple decision trees) for training from the original

data. In the parallel process none of these decision trees is

dependent on other trees.
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Algorithm 5 Random Forests Classifier

Input: Training set (S), decision tree in forest (B), the
subsample size ( µ), max iteration number (T)

Output: Set Q = ∅

1. for t ǫ {1, . . . , T} do

2. for b ǫ {1, . . . , B} do

3. Sample µ instances from S with replacement St
4. Build classifier Qt using B on St, then

5. Return T

On the other hand, the AdaBoost model is a sequential

learning process that uses the training data to make subse-

quent decision stumps [90]. In the sequential process the

decision stump is dependent on the previous decision stump.

In fact, the error made in the first decision stump through

mis-classification of few datasets influences the next decision

stump by assigning higher weights for those training data.

Algorithm 6 AdaBoost Classifier

Input: Data X whose number of elements N, training set

(S), decision tree in forest (B), subsample size ( µ), max

iteration number (T)

Output: Set Q = ∅

1. for t ǫ {1, . . . , T} do

2. Initialize data weights {Dn} to 1/N

3. find best weak classifier ym(x) by minimizing weighted

error function Jm:

Jm =
∑N

n=1
D(m)
n 1[ym (xn) 6= tn]

4. Compute errm =
∑N

n=1D
(m)
n 1 [ym (xn) 6= tn] /

∑N
n=1 D

(m)
n

5. assign weight αm = log( 1−errm
εerrm

) to classifier ym(x)

6. update the data weights: D
(m+1)
n =

D
(m)
n exp {αm1 [ym (xn) 6= tn]}

7. Normalize D
(m+1)
n to be proper distribution

8. Make prediction using the final model: YM (x) =

sign(
∑M

m=1 αmym(x))

D. PERFORMANCE MEASURE

To assess the performance of the different algorithms,

we compute the confusion matrix and use it to determine

the precision (Pi), recall (Ri), F-Measure and adjusted rand

index (ARI) as given in the following:

Pi =
TPi

TPi + FPi
(1 ≤ i ≤ c) (7)

Ri =
TPi

TPi + FN i
(1 ≤ i ≤ c) (8)

F −Measure =
2PiRi

Pi + Ri
(9)

RI =
TP+ TN

TP+ FN + TN + FP
(0 ≤ RI ≤ 1)

(10)

ARI =
RI − E[RI ]

max (RI ) − E[RI ]
(−1 ≤ ARI ≤ 1)

(11)

Here, TPi (True Positives) is the proportion of data points

classified correctly to each class i; FNi (False Negatives) is

the proportion of data points that are not classified to class i
but actually belong to class i; TNi (True Negatives) is the

proportion of data points that are correctly not assigned to

class i; FPi (False Positives) is the proportion of the data

points that are incorrectly assigned to class i.

E. MODEL FUSION

The Model fusion method is a deep learning process,

by which different classification predictive modeling algo-

rithms associated with individual weights are trained and

combined in order to enhance the final estimation. This

method turns out to be a stronger meta-classifier as it com-

bines different classification models using a majority voting

classifier estimator, partially overcoming the weaknesses of

single classifiers and achieving higher classification accu-

racy. The commonly used voting classifiers include the hard

voting classifier and soft voting classifier. The hard voting

classifier takes the majority vote applying equal weights to

each classifier (mode of all the predicted la-bels is taken)

while the soft voting classifier takes the majority vote based

on applying different weights to each classifier (probability of

all the predicted labels is taken) [56, 93]. The voting classifier

predictions can be defined as:

Hvote(x)

= max

{

∑

j
lab (x, j, 1) ,

∑

j
lab (x, j, 2)

, . . . ,
∑

j
lab (x, j, c)

}

(1 ≤ j ≤ T)(1 ≤ c ≤ K) (12)

Svote(x)

= max

{
∑

i p (x, j, 1)

nT
,

∑

i p (x, j, 2)

nT
, . . . ,

∑

i p (x, j, c)

nT

}

(13)

where Hvote(x) denotes the vote result of hard voting, lab

(x, j, c) is an indicator function that shows if x belongs to

label c calculated by jth classifier, Svote(x) is the vote result

of hard voting, p (x, j, c) is the probability for classifier

of exceeding some threshold values, nT refers to the total

number of classifiers and k is the number of labels.

V. EXPERIMENTS

A. DATA PREPARATION

The core dataset of this work is the Swiss Motor Vehi-

cle Information System (MOFIS) [92], which contains over

6.5 million passenger vehicles along with their type approval

numbers, geometric and weight properties, ownership details,

technical information and date of registration. In addition,

we also use vehicle technical specifications and vehicle

expert segmentation data from the Technical Type Approval
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TABLE 1. Performance of tested models on dataset with labeled rate of 10% from each class.

Information from the Federal Roads Office (ASTRA) [28]

and a Vehicles Expert Partner [93], respectively.

The data-mining framework consists of three main compo-

nents: filtering of raw data, extraction of the vehicle sample

by registration year, and identification of suitable clustering

attributes. In a first step we filter the dataset by removing

the vehicles that do not meet the definitions of typical pas-

senger cars, such as small pickup trucks, standard pickup

trucks, vans, special purpose vehicles (SPVs), sports cars

and multi-purpose vehicles (MPVs) [18]. By considering the

goal of this paper, the dataset is then separated into two

parts, a training part and a testing part. The training dataset

contains 308,824 new registered passenger cars in 2018 along

with 30 features including emissions (carbon dioxide (CO2),

carbon monoxide (CO), nitrogen oxides (NOx), particulate

matter (PM2.5), etc.), weight properties, dimensional features

(length, height, width, axle, etc.) and vehicle technical speci-

fications (power, engine capacity, drive, torque, etc.) for each

car. It is important to note that we used two different values

of CO2 emissions, namely the average type approval values

provided in the ASTRA database (measured CO2) and the

vehicle specific type approval values that also consider the

vehicle weight and the gearbox and are reported in theMOFIS

database (calculated CO2).

B. EXPERIMENTAL SETUP AND RESULTS

In the first step of the learning process the training dataset

is considered to contain two types of patterns: unlabeled

and labeled data. The labeled dataset results from apply-

ing the unsupervised FCM clustering algorithm to the

total 366 unique new registered passenger cars (based

on make, model and manufacturer code) based on the

dimensional features: micro class containing 18 samples,

small class containing 50 samples, middle class contain-

ing 110 samples, upper middle class containing 84 samples,

large class and luxury class containing 104 samples. The

average accuracy rate and adjusted rand index of the FCM

clustering algorithm in comparison to the Swiss expert classi-

fication was approximately 79% and 75%, respectively [18].

Due to some limitations of the unsupervised FCM clustering

algorithm, only the labeled data with true labels (in vehicle

class, measured CO2 and calculated CO2) with a membership

degree greater than 0.95 were used as the core dataset to

extract the accurate classification of misclassified samples

and provide the base for the later step of training. Following

this, we selected 10% of the data from each class as training

labeled samples.

The preliminary statistical analysis on the correlation

between the emissions, vehicle segments, sub-segments and

preselected influencing factors demonstrated a high correla-

tion between the features. In the feature learning process, the

unlabeled data and the previous labeled data along with the

labels of the core dataset are used as input. Each group of

labeled and unlabeled data has a set of features in common.

In order to eliminate multicollinearity, principal component

analysis (PCA) was performed on the data. Prior to model

development, new features are extracted to reduce the number

of features. In the feature extraction step, the cluster centroids

are defined using algorithm 2 and each patch is transformed

to a feature vector.

In the feature selection step (algorithm 3), the resampling

(ROS) technique is used in order to in-crease the number

of extracted features from minority groups until it equals

the number of features in the majority group. Then, algo-

rithm 4 (based on the Euclidean distance) is used to select

the best features and remove redundancy from the feature

vector. After we initialized all parts, pseudo labels of labeled

data are assigned to the unlabeled data in the training data.

Following, this unlabeled data with pseudo labels is used to

pre-train the SSFCM, random forest (algorithm 5) and Ada-

Boost (algorithm 6) classification algorithms by extracting

discriminative features. Finally, model fusion is applied using

only the labeled data with true labels.

The experimental results show that the single clustering

models using SSFCM, random forest and AdaBoost algo-

rithms and the fusion model all enhance the classification

accuracy in comparison to the traditional FCM algorithm

(overall accuracy of 79%). Among them, the soft voting

fusion model and the SSFCM provide the most accurate

results, 94.2 and 95.4% respectively. The F-measure value

(F1), which represents the model performance, is 91.6% for

the SSFCM clustering algorithm and 91.5% for the fusion

model with soft voting (Table 1).

From the results of the model fusion, we extract the final

features reported in Fig. 5 which we use to re-run the single

algorithms and select the final classification model.

The underlying assumption of feature extraction is that

it leads to improved classification results in comparison to

the initial classifier’s predictions with the original features.

To verify that this assumption holds for our task, we use

the prediction accuracy and other verification measures to

check the classification performance of traditional FCMwith

the original features and the SSFCM, random forest and

AdaBoost algorithms with feature extraction. It can be seen in
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TABLE 2. Prediction accuracy and verification clustering results.

FIGURE 5. Importance of features of the proposed semi-supervised clustering algorithms.

Table 2 that, compared to the FCM-based classifier, the use

of feature extraction techniques increases the classification

performance. Among all tested approaches, SSFCM provides

the best results in terms of both prediction accuracy (95.2%)

and verification measures (90.4%) and is therefore selected

as our final classification model.

The experimental results demonstrate that the SSFCM

algorithm can extract richer information from the vehicle

dataset and obtain more discriminative recognition rates

than other classifiers do. Therefore, the proposed approach

can not only effectively address the problem of multi-

class im-balanced data but also improve the prediction

performance.

C. DISCUSSIONS

Using the SSFCMmodel, we estimate the average CO2 emis-

sions of all new passenger vehicles registered in Switzer-

land in 2018 to be 138.9 g CO2/km, which only deviates

by 1.1% from the official estimate of the Swiss Federal

Office of Energy (SFOE) of 137.8 g CO2/km [94]. More-

over, for all 26 Swiss Cantons, we find that the correlation

between our estimates and those from the SFOE are very high

(R2 > 0.95). Thus, although slightly different approaches

were used to estimate the CO2 emissions in both cases, the

results are highly correlated.

The overall level of emissions from the Swiss passenger

cars is strongly affected by the fleet composition, which is

shifting in time between classes (from the upper-middle class

to the large and luxury classes) and within each class (from

non-SUV to SUV).

FIGURE 6. Distribution of the CO2 emissions among the different vehicle
classes.

Fig. 6 shows the distribution of the CO2 emissions among

the different vehicle classes. Both, the median CO2 emissions

and the spread around themedian, show a clear upwards trend

with the size of the vehicle class.
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FIGURE 7. New registered passenger cars average CO2 emissions intensity based on the interquartile range power range
(Q) by both vehicle inter-class and intra-class classification in 2018.

FIGURE 8. Spatial distribution of the share of SUV vehicles (in %) among different vehicle classes.

Fig. 7 shows the average CO2 emissions (in g CO2/km)

calculated for each vehicle segment resulting from our inter-

and intra-class classification. For each vehicle class we report

the results based on the interquartile range distributions of

the engine power. Overall, we see a significant variation

of the CO2 emissions between vehicle classes, sub-classes

and power ranges. Comparing the different vehicle segments,

we see that the CO2 emissions increase with the vehicle size.

Moreover, SUV vehicles tend to have significantly higher

emissions than non-SUVs. In terms of engine power, it can be

seen that within each class, an increase in the engine power

generally leads to significantly higher CO2 emissions.

Fig. 8 shows the spatial distribution of the share of SUVs

within the different vehicle segments. It can be seen that the

share of SUVs is the lowest for the micro and small classes

(between 0 and 20%), followed by the middle class (between

20 and 35%) and the large and luxury class (between 20 and

45%), and is the highest for the upper-middle class (between
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FIGURE 9. Spatial distribution of the average CO2 emissions (in g CO2 /km) among different vehicle classes
and sub-classes.

30 and 50%). Moreover, we observe that in general the share

of SUVs within each class is higher in the southern and center

cantons.

Fig. 9 reports the spatial distribution of the average CO2

emissions for each vehicle class and sub-class. As previously

observed, the results demonstrate a high variability in the

CO2 emissions between the different inter and intra-classes.

Among the different segments, the CO2 emissions increase

with the size of the vehicle, from around 100 g CO2/km for

the micro class to around 200 g CO2/km for the large & lux-

ury class. Moreover, SUV vehicles exhibit generally higher

CO2 emissions than non-SUVs. This difference is extremely

remarkable in the case of micro class vehicles, although,

as shown in Fig. 7, the share of SUVs is very small in this case.

However, this indicates that shifting from a middle class non-

SUV vehicle to a micro class SUV could lead to an increase

in the CO2 emissions. In general, the spatial distribution of

the CO2 emissions for each vehicle class and sub-class is

quite homogeneous and we do not see any significant trends

between different regions of the country.

VI. CONCLUSION

To This paper develops a novel approach to mathemat-

ically segment new registered passenger cars and assess

the segment-based spatial distributions of the CO2 emis-

sions. A variety of semi-supervised clustering algorithms are

adopted to classify a dataset of new registered passenger

cars based on multiple technical, dimensional and emission
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features. Among all tested classifiers, the SSFCM technique

was the most accurate, providing a classification accuracy of

about 90.4% for verification measures.

The proposed approach enables accurate automated vehi-

cle classification of large databases, which in turn facilitates

the analysis of fleet changes. Another important advantage

of the clustering based mathematical segmentation is that

it removes the subjectivity factors affecting expert-based

segmentations, reducing classification errors and making

databases from across the world comparable. Finally, the

automatized clustering approach also reduces classification

costs and training time.

Despite technology improvements, the Swiss passenger car

fleet remains emission intensive. Our results indicate large

variabilities in the average CO2 emissions of different vehicle

classes. While a shift of the fleet towards smaller vehicles

is likely to diminish CO2 emissions, the emissions intensity

could be more effectively reduced by shifting the vehicles

proportion within each class (e.g., switching from SUV to

non-SUV or to lower power vehicles in the same vehicle

class). Therefore, the combination of the inter-class and intra-

class classification provides crucial insights for developing

fleet transformation strategies to decarbonize the passenger

vehicle fleet. A further area of potentially fruitful research

would be to use CO2 estimates from real world measurements

instead of type approval values for a more precise evaluation

of the fleet CO2 emissions.
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